Medical Exhibits - Demonstrative Evidence Expert Blog - MediVisuals

Medical Legal Illustration and Animation - Cross Sections

Posted by Tara Rose on Mon, Jun 18, 2012

By: Robert Shepherd MS, Certified Medical Illustrator, Vice President and Director of Eastern Region Operations,MediVisuals Incorporated

Long before science had advanced to allow imaging of the body in sectional views by computed tomography (CT) and magnetic resonance imaging (MRI), medical illustrators were illustrating the body in sectional views because these views are the best way to appreciate some anatomical relationships. 

Medical illustrators, physicians, and others who have studied anatomy are familiar with sectional views of the body and appreciate the value of these views in explaining the relationship of anatomical structures. However, accomplished and well respected jury consultants and non-medical illustrator legal graphics experts have expressed concerns that sectional views may be difficult for some jury members to understand. These individuals' opinions are valuable to those of us in the legal graphics business, and I agree with their opinions that, when other views can communicate a particular relationship message equally as well or better, sectional views should be avoided. I also believe most of these experts will agree that there are times and places in which sectional views of anatomy are the best way to appreciate some anatomical relationships. Granted, there have been times when we have been working on specific cases and experts have insisted that sectional views be absolutely and unconditionally avoided. Unfortunately, in these situations the experts were unable to suggest a more effective view to communicate the relevant anatomical relationships (at least in a way that was practical in terms of time and expense). That being the case, sometimes the sectional views were used despite the input of the experts, and at other times, the relationships of the structures had to be explained without the benefits of graphics.

A way to perhaps explain how sectional views help decision makers appreciate relevant anatomical and pathological relationships is to compare them to aerial views or photographs of the scene of a collision.  Space is defined in three planes. Only two of these planes can effectively be demonstrated in a two-dimensional rendering. For example, aerial views have long been used to help explain the positions of vehicles and structures that simply can't be appreciate from "street views". When viewing the scene of a collision from a "street view", one can appreciate vertical and horizontal distances, but not depth; distances close to and far from the viewer's perspective are very difficult to appreciate (see the below figures). By comparison, when viewing an operative site through a "surgeon's view", vertical and horizontal distances can be appreciated, but the depth of the incision and the relationships of the various structures within and around the incision are very difficult or impossible to appreciate.

 

Cross Section Blog image1 REVISED

 

The "aerial view" of the collision scene allows the viewer to appreciate distances in two geographical planes as well (distances right and left, and toward and away from the "street view," but the ability to appreciate up and down is lost). Also, the locations of relevant structures or vehicles that may have been obstructed by nearby structures (such as buildings trees, signs, or other vehicles) can now be appreciated. Similarly, a sectional view of anatomy can help decision makers appreciate depth relationships of structures. Or, a sectional view of a step in a surgical illustration can allow the viewer to appreciate the depth of the surgery as well as the additional structures that may have been injured (or at risk of injury) during the invasive procedure.  These specific depth  relationships could not be appreciated from the "surgeon's view" of the same surgery shown in the above illustration.

 

Cross Section Blog image2 REVISED

 

Exhibits developed to help explain the invasive nature of a surgery and the disruption of the soft tissues during operative procedures are critical. For that reason, sectional views are critical in aiding a testifying physician to explain these issues. For example, the exhibit panel that demonstrates an anterior cervical discectomy and fusion (ACDF) that does not include a cross-section through the neck fails to emphasize the depth of the incision and disruption of tissues (essentially all the way to the center of the neck). This depth simply cannot be appreciated in a "surgeon's view".

In order to appreciate cross-sections, orientation views that show the level and direction of the section are helpful (see below), or when time, budget, and presentation format (digital as opposed to a physical panel) allow, a short animation showing the sectional view actually coming out of the orientation view such as MediVisuals' "Scan SelectorTM" can be used.

 

cross-section plane of brain hematoma

Topics: intervertebral disc, coup-contracoup, medical-illustrator, trial exhibit, disc herniation, degenerated disc, disc bulge, trauma, hematoma, traumatic-brain-injury, medical exhibits, medical-legal-illustration, disc injury, brain, TBI, medical expert, intracranial, surgery, MediVisuals, medical exhibit, personal injury, spinal injury

Disc-Osteophyte Complex Explained

Posted by Delia Dykes on Wed, May 2, 2012

By: Robert Shepherd MS, Certified Medical Illustrator, Vice President and Director of Eastern Region Operations, MediVisuals Incorporated

Individuals who develop new or suddenly worsening symptoms consistent with nerve root or spinal cord impingement following a traumatic event are sometimes diagnosed with “disc-osteophyte complexes”. The term “disc-osteophyte complex” generally refers to abnormal extension of intervertebral disc material that accompanies immediately adjacent osteophyte formation at the vertebral body margin (see the below figure). It is important to note (as shown in the illustrations) that the disc almost always extends further than the osteophytes into the neural foramen or spinal canal to irritate or impinge upon nerve roots or the spinal cord.

 

DiscOstCompBlogASTAMP

 

Occasionally, individuals who are evaluated shortly after a traumatic event are found to have disc-osteophyte complexes. Because a minimum of several weeks is required for osteophytes to form as a result of a traumatic event, defendant insurance companies may argue that the presence of osteophytes so soon after the traumatic event in question may prove that the plaintiff’s injuries preexisted the traumatic event. Since it is the disc pathology extending beyond the osteophytes that is the actual cause of the nerve root or spinal cord irritation and inflammation, the defense’s arguments are not valid. As shown in the illustrations below, the sequence of events that typically takes place in these cases is that the plaintiff had minimally symptomatic or asymptomatic disc osteophytes prior to the traumatic event in question. During the traumatic event, the disc sustains trauma that results in worsening of the disc pathology while the osteophyte portion of the osteophyte/disc complex remains essentially unchanged. This worsening of the disc pathology in turn results in new or increased irritation or impingement of the neural elements.

 

DiscOstCompBlogBSTAMP

Topics: intervertebral disc, medical-illustrator, trial exhibit, disc herniation, disc bulge, trauma, medical exhibits, medical-legal-illustration, disc injury, MediVisuals, medical exhibit, personal injury, spinal injury, osteophyte, cervical strain

Intra-articular Fractures Explained

Posted by Delia Dykes on Wed, Oct 5, 2011

By: Robert Shepherd MS, Certified Medical Illustrator, Vice President and Director of Eastern Region Operations, MediVisuals Incorporated

Intra-articular fractures are simply fractures that involve a joint space (see below figure). While intra-articular fractures appear very similar to those that do not involve a joint space (extra-articular fractures), intra-articular fractures are significantly more serious because they are associated with a much greater incidence of long-term complications.

 

Image1 TwoFracsSTAMPED


In order to appreciate why intra-articular fractures can be so problematic, a fundamental understanding of a typical joint is helpful. The following images show a knee joint. With the exception of a meniscus, almost all moveable joints are similar to the knee joint in that the joints are lined with a thick, shock-absorbing articular cartilage adherent to smooth, bony surfaces that allow pain-free movement.


Image2 NormJointSTAMPED

When a fracture involves the articular surface of one or more bones of a joint, the articular cartilage and smooth articular surface of the bone are disrupted. In order for joints to have the best chance of proper joint function after healing, physicians go to greater effort to make sure the bony surfaces are properly aligned and that the joint is properly immobilized than they would with a similar fracture that is extra-articular. Even with the best fracture alignment and joint immobilization, subtle disturbances in the joint surface and the natural bone reformation that take place during healing can result in uneven joint surfaces and injury to the overlying articular cartilage (see the below illustration). Because of the abnormalities of the injured and healed joint surface, natural movement of the joint can also damage the articular cartilage of the opposing joint surface. Over the course of time, these injuries self-perpetuate and may necessitate arthroscopic debridementchondroplasty or even joint replacement.



Image3 Frac AfterHealSTAMP

It is also important to realize that a fracture needs not enter a joint to result in injury to the articular surfaces and begin the self-perpetuating post-traumatic breakdown of the joint surfaces (post-traumatic arthritis). As shown in the below illustrations, joint trauma without a diagnosable fracture of any type can injure the smooth, shock-absorbing articular cartilage, with or without microfractures of the underlying bone. This can result in partial or total loss of the articular cartilage and in uneven "bone-on-bone" articulation that severely decrease range of motion and result in debilitating joint pain.


Image4 ArthritisSTAMPED2

Topics: knee replacement, arthritis, joint, ankle, medical exhibits, medical-legal-illustration, MediVisuals, medical exhibit, facet joint, personal injury

Understanding Traumatic Brain Injuries: "Mild" to Severe - Part 2

Posted by Tara Rose on Thu, Jul 14, 2011

By: Robert Shepherd MS, Certified Medical Illustrator, Vice President and Director of Eastern Region Operations, MediVisuals Incorporated

This article is a continuation of a two-part article on traumatic brain injury. Part 1 covered severe traumatic brain injury while part 2 addresses "mild" less severe traumatic brain injury.

A person suffers a brain injury once every few seconds in the United States, with many going undiagnosed. Significant facts associated with these injuries include: 1) MRI or CT imaging studies not showing injuries, 2) the injured person might not think anything is wrong with them, and 3) physicians and others who did not know the patient prior to the traumatic brain injury may not appreciate the cognitive deficits and diagnose the condition. (Often, only persons who knew the injured person before the accident notice differences in personality, behavior, or cognitive function.)

TBI   RitzmannExh03

During trauma, illustrated above, the brain impacts against the inside of the skull. Shearing injuries often occur because the gray and white matter are of different densities; therefore, the axons tear at the junction of the white and gray matter. The injuries can consist of torn or twisted axons, or the axons can pull away from their synapse.

Axonal injury can also occur without the head striking an object. This often occurs in collisions. During a sudden deceleration injury, the brain impacts the inside of the skull in a coup - contracoup fashion, which means that the brain first impacts the area of the skull receiving the trauma and then impacts the area of the skull directly opposite of the trauma, as seen in the animation below. As a result, shock waves of the forces travel through the brain.

TBIanimation still

During sudden deceleration, the brain impacts on the hard jagged ridges of the base of the skull causing shearing forces, as depicted in the illustration below.

ShearFORCE

Blood vessels may also become torn or broken during a TBI, resulting in bleeding (see image below). An MRI or CT is not capable of detecting individual or even relatively large areas of axonal injury. Lesions detected by MRI or CT are typically areas of hemorrhage, if the hemorrhages are large enough.

BV axon

Axons range in diameter from 1/4 of a micron to 10 microns while blood vessels range in diameter from 30 to 240 microns. If forces are sufficient to tear the much larger and resilient blood vessels (see illustration below), it is certain that numerous axons in the adjacent and other areas are torn as well.  However, axons may be torn without injury and significant hemorrhage from nearby blood vessel is not torn, so the absence of findings on MRI or CT DO NOT RULE OUT traumatic brain injuries.

tornAXON

When hemorrhaging is not involved, traditional imaging studies, such as MRI or CT, are able to detect only large areas of axonal injury where thousands of axonal injuries create an area of abnormality large enough to be detected. 

The loss of the sense of smell is an indicator of traumatic brain injury. The image below depicts the normal olfactory anatomy with the olfactory nerves extending through the cribiform plate and innervating the nasal passages. During trauma to the head, the forces can be great enough to sever the relatively large olfactory nerves, which affects the sense of smell. Forces sufficient to injure the olfactory nerves are certainly sufficient to result in diffuse axonal injuries throughout the brain whether evident on imaging studies or not.

describe the image

Problems with many functions (such as hearing, speech, and balance) following head trauma can result from injury to axons anywhere along the pathway involved in performing those function. For example, the ability to repeat a spoken word requires the proper function of the neural pathways for hearing and speaking, as shown in the animation below.

Axon animation

Keys to detecting and proving "mild" less severe traumatic brain injuries are as follows:

1) Rely on changes of behavior and cognitive function as reported by family members, coworkers and friends. Casual examinations by a physician may not result in a diagnosis.

2) The absence of physical brain injuries on traditional MRI or CT DOES NOT RULE OUT brain injuries.

3) Correlation of traumatic forces with injury to the specific areas of the brain  that control those functions is very important when proving a "mild" less severe traumatic brain injury.

Topics: coup-contracoup, trauma, hematoma, medical exhibits, medical-legal-illustration, brain, axon, olfactory, loss of smell, TBI, MediVisuals

Hot Coffee: The Documentary - Premiering on HBO on June 27

Posted by Trisha Haszel Kreibich on Tue, Jun 21, 2011

McDonalds Coffee CupEveryone knows the McDonald's Hot Coffee case -- or at least everyone thinks they know about the McDonald's Hot Coffee case. Most of America still does not know the truth. When the case first hit the media, news groups misstated the facts, and television programs joked or performed spoofs about the case. Even "The Oprah Winfrey Show" was guilty of fanning the fire of misconception until they learned of the real facts of the case and, in a later show, recanted what was initially said.

"Hot Coffee The Movie" is a documentary that reveals the truth about the McDonalds Hot Coffee case. It also examines "tort reform" and its threat to our civil justice system by following four people, including the McDonald's Hot Coffee plaintiff, Stella Liebeck, through their struggles in accessing the court system.

The documentary was directed by former trial lawyer and first-time filmmaker Susan Saladoff and has been selected for numerous film festivals, including the prestigious Sundance Film Festival. It has also been awarded "Best Documentary" at the Seattle Film Festival and Tampa Gasparilla Film Festival. The documentary will premiere on HBO on Monday, June 27, at 9:00PM EST as part of their Summer Documentary Series. The trailer can be viewed using the following link: http://hotcoffeethemovie.com/

MediVisuals was proud to support this project by helping raise funds for development of the documentary and by providing images and animations. Some of the facts about the case detailed in the documentary are as follows:
 
· Over 700 complaints of injuries from hot coffee were filed against McDonalds prior to the one that received so much notoriety


· The plaintiff was not driving the vehicle, nor was it moving when the spill occurred (she was a passenger in a vehicle sitting still in the parking lot)


· The coffee resulted in severe third degree burns in the plaintiff's groin region and thighs (there are very graphic photos of the severe burns)


· The plaintiff had to undergo skin grafting to address the injuries


· The plaintiff initially only requested that McDonalds pay her medical bills


· Because the facts lead the jury to conclude that McDonalds was exceptionally negligent in its behavior, the jury awarded the plaintiff ~$160K in compensatory damages and ~$2.7 million in punitive damages


· The $2.7 million was equivalent to the profits to only 2 days of McDonald's coffee sales


· The judge then reduced the award to $480K so the plaintiff and attorney received very little for their time and effort pursuing justice

For more information on Hot Coffee: The Movie, please visit: http://hotcoffeethemovie.com/



Topics: Stella Liebeck, medical exhibits, mcdonalds case, tort reform, hot coffee, civil justice system, Susan Saladoff